Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle.
نویسندگان
چکیده
The maximal exercise capacity of patients with chronic heart failure is frequently reduced. To investigate whether this exercise intolerance is caused by inadequate nutritive flow to skeletal muscle, we compared cardiac outputs, leg blood flow, and leg metabolism during maximal bicycle exercise in seven patients with normal maximal oxygen uptake (VO2) (greater than 20 ml/min/kg; group A), eight patients with heart failure and moderately reduced maximal VO2 (15 to 18 ml/min/kg; group B), and eight patients with heart failure and markedly reduced maximal VO2 (less than 14 ml/min/kg; group C). As the severity of exercise intolerance increased from group A to group C there was a progressive decline in cardiac output and leg blood flow at any given workload accompanied by a progressive decline in maximal cardiac output (liters/min) (A, 12.4 +/- 1.0; B, 8.7 +/- 0.9; C, 5.5 +/- 0.7), maximal leg flow (liters/min) (A, 4.0 +/- 0.3; B, 2.6 +/- 0.4; C, 1.4 +/- 0.2), and maximal leg VO2 (ml/min) (A, 564 +/- 49; B, 403 +/- 41; C, 213 +/- 35 ml/min). All patients terminated exercise because of severe leg fatigue. At termination of exercise, all three groups exhibited similar marked levels of leg O2 extraction (%) (A, 80 +/- 2; B, 83 +/- 3; C, 89 +/- 1) and high femoral-arterial lactate gradients (mg/dl) (A, 15.4 +/- 2.6; B, 18.3 +/- 3.5; C, 19.2 +/- 3.6), suggesting that exercise was limited when a critical level of muscle underperfusion was reached. These data suggest that the reduced maximal exercise capacity of patients with chronic heart failure is primarily due to impaired nutritive flow to skeletal muscle and resultant muscular fatigue.
منابع مشابه
PATHOPHYSIOLOGY AND NATURAL HISTORY CONGESTIVE HEART FAILURE Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle
The maximal exercise capacity of patients with chronic heart failure is frequently reduced. To investigate whether this exercise intolerance is caused by inadequate nutritive flow to skeletal muscle, we compared cardiac outputs, leg blood flow, and leg metabolism during maximal bicycle exercise in seven patients with normal maximal oxygen uptake (V02) (>20 ml/min/kg; group A), eight patients wi...
متن کاملImpact of Aerobic Exercise on Restoration of Soleus and Gastrocnemius Muscles Microcirculations in Wistar Rats with Chronic Heart Failure
ABSTRACT Background and Objective: Scientific evidence reveals that the density of skeletal muscle microcirculations decreases in the patients with chronic heart failure. Therefore, this study aimed to determine the impact of submaximal aerobic exercise training on restoration of fast/slow-twitch muscle fibers microcirculation in rats with myocard...
متن کاملExercise intolerance in patients with chronic heart failure.
Patients with chronic heart failure (CHF) experience significant morbidity because of dyspnea and fatigue with activities of daily living. Although central hemodynamic abnormalities are the hallmark of this disorder, investigators have not shown a relationship between left ventricular ejection fraction or exercise pulmonary capillary wedge pressure and exercise intolerance in this disorder. Rec...
متن کاملEndurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure
Objective(s): Previous studies showed that skeletal muscle microcirculation was reduced in chronic heart failure. The aim of this study was to investigate the effects of endurance training on capillary and arteriolar density of fast and slow twitch muscles in rats with chronic heart failure. Materials and Methods: Four weeks after surgeries (left anterior descending (LAD) artery occlusion), chr...
متن کاملSkeletal muscle abnormalities and evidence for their role in symptom generation in chronic heart failure.
The syndrome of chronic heart failure is characterized by exercise limitation usually associated with breathlessness or fatigue. The mechanism by which this exercise intolerance is generated remains unclear. Although muscular atrophy has been recognised as a part of the chronic heart failure syndrome for many years'" only recently has skeletal muscle been studied in any detail. Widespread abnor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 69 6 شماره
صفحات -
تاریخ انتشار 1984